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Ising Spin Glass on Bethe Lattice

 Infinite limit of Cayley (g-regular) trees
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Classical Cavity Method (B, = 0)

Iteration Equations for Cavity Fields
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Classical Cavity Method (cont’d)

* For the non random case, fixed points
of the iteration equation yield cavity
fields well away from the outer layer of

the tree

* For the random case, consider a
distribution of cavity fields which
reproduces itself in the interior of the
tree (generational average)



Classical Cavity Method (cont’d)

Replica Symmetric Fixed Point for Cavity Field Distribution:
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Quantum formulation

Useful to think in path integral language

Integrating out ancestor spins generates
a cavity effective action for given spin

At next step combination of “bare”
action and cavity action give rise to a
functional recursion relation

For spin glass, study distribution of
cavity actions



Why is this interesting?

Nature of ordering in spin glass unsettled
(Catholics vs Protestants) OMAC

Quantum effects in ordered phase could use problems
more microscopic investigation

Leads to approximate theory of systems
with sparse loops, such as random graphs
with fixed connectivity Ouantum

Corresponding algorithm is belief BP
propagation




Detalls: Trotter Decomposition

e Transverse field B, generates ferromagnetic coupling
[" in imaginary time

« Disordered within hyperplanes; correlated along

Imaginary time
A
NaE
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Cavity Actions

Cavity Fields
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Quantum Fixed Point
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Use population dynamics to generate distribution
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Elementary treatment

6-11 time slices
2500 cavity actions
2500 * 1000 iterations

Keep only two spin interactions in
effective action, but between all time
slices

Still, nontrivial results, cf Usadel & Co.
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Fixed point distributions

* In PM phase there is no local magnetic field;
spin-spin interaction has unique value
(generally, cavity action is unique in PM
phase)

* |In SG phase field has a distribution — needed
to produce EA op - as does the interaction
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Imaginary Time Interactions & Correlations

Imaginary Time Correlalion Function [ =4, N, = 11)
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Single Spin von Neumann Entropy

Reduced Entropy (N, = &)
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Future directions

Run the iteration on a fixed instance of a
random graph (QBP)

Continuous time formalism
MC evaluation of cavity action (MCRG)
Analytic limits

What would a truly quantum BP look like -
one that would run on a quantum computer?
(Fixed point behavior versus unitary
evolution, QMAC by QC)
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